Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Lancet Microbe ; 3(3): e193-e202, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1721237

RESUMEN

BACKGROUND: Safe and effective vaccines are urgently needed to end the COVID-19 pandemic caused by SARS-CoV-2 infection. We aimed to assess the preliminary safety, tolerability, and immunogenicity of an mRNA vaccine ARCoV, which encodes the SARS-CoV-2 spike protein receptor-binding domain (RBD). METHODS: This single centre, double-blind, randomised, placebo-controlled, dose-escalation, phase 1 trial of ARCoV was conducted at Shulan (Hangzhou) hospital in Hangzhou, Zhejiang province, China. Healthy adults aged 18-59 years negative for SARS-CoV-2 infection were enrolled and randomly assigned using block randomisation to receive an intramuscular injection of vaccine or placebo. Vaccine doses were 5 µg, 10 µg, 15 µg, 20 µg, and 25 µg. The first six participants in each block were sentinels and along with the remaining 18 participants, were randomly assigned to groups (5:1). In block 1 sentinels were given the lowest vaccine dose and after a 4-day observation with confirmed safety analyses, the remaining 18 participants in the same dose group proceeded and sentinels in block 2 were given their first administration on a two-dose schedule, 28 days apart. All participants, investigators, and staff doing laboratory analyses were masked to treatment allocation. Humoral responses were assessed by measuring anti-SARS-CoV-2 RBD IgG using a standardised ELISA and neutralising antibodies using pseudovirus-based and live SARS-CoV-2 neutralisation assays. SARS-CoV-2 RBD-specific T-cell responses, including IFN-γ and IL-2 production, were assessed using an enzyme-linked immunospot (ELISpot) assay. The primary outcome for safety was incidence of adverse events or adverse reactions within 60 min, and at days 7, 14, and 28 after each vaccine dose. The secondary safety outcome was abnormal changes detected by laboratory tests at days 1, 4, 7, and 28 after each vaccine dose. For immunogenicity, the secondary outcome was humoral immune responses: titres of neutralising antibodies to live SARS-CoV-2, neutralising antibodies to pseudovirus, and RBD-specific IgG at baseline and 28 days after first vaccination and at days 7, 15, and 28 after second vaccination. The exploratory outcome was SARS-CoV-2-specific T-cell responses at 7 days after the first vaccination and at days 7 and 15 after the second vaccination. This trial is registered with www.chictr.org.cn (ChiCTR2000039212). FINDINGS: Between Oct 30 and Dec 2, 2020, 230 individuals were screened and 120 eligible participants were randomly assigned to receive five-dose levels of ARCoV or a placebo (20 per group). All participants received the first vaccination and 118 received the second dose. No serious adverse events were reported within 56 days after vaccination and the majority of adverse events were mild or moderate. Fever was the most common systemic adverse reaction (one [5%] of 20 in the 5 µg group, 13 [65%] of 20 in the 10 µg group, 17 [85%] of 20 in the 15 µg group, 19 [95%] of 20 in the 20 µg group, 16 [100%] of 16 in the 25 µg group; p<0·0001). The incidence of grade 3 systemic adverse events were none (0%) of 20 in the 5 µg group, three (15%) of 20 in the 10 µg group, six (30%) of 20 in the 15 µg group, seven (35%) of 20 in the 20 µg group, five (31%) of 16 in the 25 µg group, and none (0%) of 20 in the placebo group (p=0·0013). As expected, the majority of fever resolved in the first 2 days after vaccination for all groups. The incidence of solicited systemic adverse events was similar after administration of ARCoV as a first or second vaccination. Humoral immune responses including anti-RBD IgG and neutralising antibodies increased significantly 7 days after the second dose and peaked between 14 and 28 days thereafter. Specific T-cell response peaked between 7 and 14 days after full vaccination. 15 µg induced the highest titre of neutralising antibodies, which was about twofold more than the antibody titre of convalescent patients with COVID-19. INTERPRETATION: ARCoV was safe and well tolerated at all five doses. The acceptable safety profile, together with the induction of strong humoral and cellular immune responses, support further clinical testing of ARCoV at a large scale. FUNDING: National Key Research and Development Project of China, Academy of Medical Sciences China, National Natural Science Foundation China, and Chinese Academy of Medical Sciences.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , China , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina G , Pandemias/prevención & control , Glicoproteína de la Espiga del Coronavirus , Vacunas Sintéticas , Vacunas de ARNm
2.
Int J Biol Sci ; 17(2): 539-548, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1090199

RESUMEN

Rationale: Coronavirus disease 2019 (COVID-19) has caused a global pandemic. A classifier combining chest X-ray (CXR) with clinical features may serve as a rapid screening approach. Methods: The study included 512 patients with COVID-19 and 106 with influenza A/B pneumonia. A deep neural network (DNN) was applied, and deep features derived from CXR and clinical findings formed fused features for diagnosis prediction. Results: The clinical features of COVID-19 and influenza showed different patterns. Patients with COVID-19 experienced less fever, more diarrhea, and more salient hypercoagulability. Classifiers constructed using the clinical features or CXR had an area under the receiver operating curve (AUC) of 0.909 and 0.919, respectively. The diagnostic efficacy of the classifier combining the clinical features and CXR was dramatically improved and the AUC was 0.952 with 91.5% sensitivity and 81.2% specificity. Moreover, combined classifier was functional in both severe and non-serve COVID-19, with an AUC of 0.971 with 96.9% sensitivity in non-severe cases, which was on par with the computed tomography (CT)-based classifier, but had relatively inferior efficacy in severe cases compared to CT. In extension, we performed a reader study involving three experienced pulmonary physicians, artificial intelligence (AI) system demonstrated superiority in turn-around time and diagnostic accuracy compared with experienced pulmonary physicians. Conclusions: The classifier constructed using clinical and CXR features is efficient, economical, and radiation safe for distinguishing COVID-19 from influenza A/B pneumonia, serving as an ideal rapid screening tool during the COVID-19 pandemic.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico por imagen , Gripe Humana/diagnóstico por imagen , Neumonía Viral/diagnóstico por imagen , Radiografía Torácica , Anciano , COVID-19/epidemiología , COVID-19/fisiopatología , COVID-19/virología , Aprendizaje Profundo , Diagnóstico Diferencial , Humanos , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/fisiopatología , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Pandemias , Neumonía , Neumonía Viral/fisiopatología , Neumonía Viral/virología , Curva ROC , Estudios Retrospectivos , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad
3.
Can Respir J ; 2020: 8715756, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-1066954

RESUMEN

Background: Nonresponding pneumonia is responsible for the most mortality of community-acquired pneumonia (CAP). However, thus far, it is not clear whether viral infection plays an important role in the etiology of nonresponding CAP and whether there is a significant difference in the clinical characteristics between viral and nonviral nonresponding CAP. Methods: From 2016 to 2019, nonresponding CAP patients were retrospectively enrolled in our study. All patients received bronchoalveolar lavage (BAL) and virus detection in BAL fluid by multiplex real-time polymerase chain reaction (PCR), and clinical, laboratory, and radiographic data were collected. Results: A total of 43 patients were included. The median age was 62 years, and 65.1% of patients were male. Overall, 20 patients (46.5%) were identified with viral infection. Of these viruses, influenza virus (n = 8) and adenovirus (n = 7) were more frequently detected, and others included herpes simplex virus, human enterovirus, cytomegalovirus, human coronavirus 229E, rhinovirus, and parainfluenza virus. Compared with nonviral nonresponding CAP, only ground-glass opacity combined with consolidation was a more common imaging manifestation in viral nonresponding CAP. However, no obvious differences were found in clinical and laboratory findings between the presence and the absence of viral infections. Conclusions: Viral infections were particularly frequent in adults with nonresponding CAP. The ground-glass opacity combined with consolidation was a specific imaging manifestation for viral nonresponding CAP, while the clinical and laboratory data showed no obvious differences between viral and nonviral nonresponding CAP.


Asunto(s)
Líquido del Lavado Bronquioalveolar/virología , Reacción en Cadena de la Polimerasa Multiplex , Neumonía Viral/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antibacterianos/uso terapéutico , Infecciones Comunitarias Adquiridas/diagnóstico , Infecciones Comunitarias Adquiridas/virología , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neumonía Bacteriana/diagnóstico , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Viral/virología , Estudios Retrospectivos , Adulto Joven
4.
Ther Adv Chronic Dis ; 11: 2040622320961590, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-806532
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA